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ABSTRACT

With the spread of digital financial transactions and online communication channels,
cybercrime involving Telegramand websites has been constantly increasing. However, clear
limitations exist in manually analyzing and classifying vast text-based open-source intelligence
(OSINT) dataaccordingly, the need for an automated classification system is growing. To solve
this problem, this study proposes an integrated framework for automatically classifying crime
conditions and types by structuring Telegram channel messages and website HTML into
keyword-based knowledge graphs and applying graph neural networks (GNNs). Structured
knowledge graphs are used to learn graph convolutional networks (GCNs) for multiclass crime
type classification of Telegram channels and binary crime/normal classification of websites. As
a result of the experiment, the GCN model showed overall superior performance compared
with comparative models such as logistic regression, multilayer perceptron (MLP), and
XGBoost and achieved an F1 score of approximately 0.80 in Telegram crime type classification
and approximately 0.92 in website crime detection. Taken together, this study proposes the
basis for automating cybercrime detection and classification by connecting text-based OSINT
to a knowledge graph-GNN workflow and expanding it to multimodal and heterogeneous
graph-based threat intelligence systems in the future.

KEYWORDS

knowledge graphs, graph neural networks (GNNSs), open-source intelligence (OSINT), cybercrime
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<Figure 1> Example of a graph convolutional network as a basic GNN model.
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<Figure 2> TGDataset channel metadata (left) and the corresponding Telegram channel
(right).
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8" HTML 4 o] ¢ FAE 7[uh OSINT 2 2-8-517] 9lsl 2 =0 ZAj2] mto]
ol B2 HAE AmA Hestirt WA, 2 HTML o2 4] Bfoji2] JEj=
7, <meta charset="-"> | 15 2AA 0 2 GAlIsto] YAIH A QILFS FE35tL,
Bt EAfsHA] e dfolle Abs A2 £ 2tolB2{3] chardets o]8sto] <
S o5 7|Rte 2 A = ISRt Y oM 77t EAyshe

-85 71202 ARE St &40 AME tiAllshe WAl o AR o ea, thefet
AHESte FEO|X|o M = 7H5et oF W2 FIAE RS BESHES 519

HTML 2A}&-2 Python 7]8F HTML I}HA] BeautifulSoup ©]-83f mAl5}ei 0.
ol A <script>, <style>, <noscript>@} Zo] A To]A] A[ofl= oI 5HA] ALt
of 272 83t EBf 152 A7{st%ith. 0] % DOM 204 Fof] Holz= HAE & E0h 255}
D2 TR S fAISP] {16 L2 AHI)E Ateloll FaL shupe] EAtE 2 A HA
dotict. Al 5A o A5 HIMLHAE SmAs EFSHY|YE 25 37U &
i Ago] Yo 2 AR, A Afo] E9f sl st TIAIE 7]t EHQl et

fol £0f] sligsl= Tranco 718 =091 -2 g sto] WAto|E =uj|Qlo] ¥ E] /%74 o]
w5 222 oh5sh] st o dlolH = ZE5ii.

ol
> Oof
> o
[
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ol
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i
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|m
fuju
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ozl

rok
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B

<Table 1> Example of data within HTML text corpus creation workflow

CIXIE MASE BZ| 242 ALO|E(ALO[H =5 HTML EIAE FHA

—

OUR o E
GAMESIVIEW ALL|+|FOOTER

3.1.3. 4 EALO|E Cl|o[E{ 4l =3

737 SAAro] E Hlo|BAl 2 WA At AAfo] Eof tju] &= | QF e gle 7 =od A
&2 dshr] Yol & EfH 7|9t =oQl &%) 2]AEQ] Trancog &-&6to] 55Tt
Trancot= of2] olgt AA0] Ecid to]B & 7|90 2 =l Q17| -9 & 4At&Eoh= A&
AER TRl HEolu QIYAIQl A0 & g17dstal, Hok-Lajo]HA] oA AjH

7hsst =l S 71E-E Alesithe AollA 'de] AR 23], 2 Aol A= Python &
Tranco Tj7]X]Z 0]&519f £]4l Tranco 2| AERRE 49 EjE UQlE3 AFs 02 4
Aot on, o] 5 AutA Rl A4} Ao EQ] T B0 & JH5sIeint. 40 2F w=of|Qlof
ol 3.1.2782] HE| AP WAL EQF Ust HtAlo 2 A& HTML wA1 S pAISH F. 59 &l
A2] ofo]ZeQl(Ql iy Ty W t] 3, HTML 1}/, 229 Ef 1 A, 7HA] &4 Eﬁ%)%
A goto] BIAE AR HeHSIRIT)

0]} Zo] Tranco 9] =|Ql H=olA 43 -FA2]e HTML ElAE = ¥z]e} 217440l
wdo] Yl 7874l AAtol E Ao & IhRsIeint. 2|54 02| BX|E |§te] WA Ayt
HQ1z} Tranco 718] 4 ©oi|Q1S S3sto] <UAo]E wif[Ql Tl & T A4t o]
R A eS HolEAlS F/d5hel on, o] AJAl T2 L-GNN 7|9t 25 20| ¥E 2

E'H/\QHH:HQ‘— K%)\PELEH/\E 3]. q.

3.2. ¥ /5 A Hx 7E 2PE™ V|E

3.2.1. TGDataset 7|4+ %2{| 134 '3 HX| | 2pd3y
2 o W12 Aol B 2 3
LDA(Latent Dirichlet Allocation) 7|8F EX
Z7J5to] Aojxl TGDataset U AjE-E ol Auts
Zo], TGDatasetol| 4] scam = true@ BA|H AE-2 HE| A A2 =2, verified = true2 &
A AP A B4 AR 1Skl ol £59) WA 9% 2he Holstert. o)F WA
AT Ao diefa]= LDA 7]¥t B4 A HEE ECRM(European Cybercrime Research
Manual)] Afo|ti#s] 28 APiie} 2joj 0.2 714 717ke o] ujmeo2m A Hol
o] WA] 9.3 218 Aol Aol A EuQl x| Alo] M3t el Aol 4 7} AL
e 02 AP G- LSHE 21 AT Aut A7 SHo)A 8] H AR o]ol] T2, &
TOIAE TGDatasete] £ 2flaf ECRM Afolsa] -5 AAIS ATt ol2iet 2415
o) WAl Afestoct

AR 02, 1= AW A FEAI% AR 02 ABE ‘Carding ETT, A1 B

_IE
H:I
i)
ol o
o
4>
8‘:’
o
2
N (U
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B

I-EXF A9 A ‘US news’, ‘Crypto’, Indian edu’” EXL 0 % FAfo|H AP, HE R
E35k519d oD:] ot FC Oxn FAMaOx] 29 H|AI} AZ E o] HEQ} AtE] ‘videogame
modding’ @ ‘Software’ EWo] AQ Fotyma Ja , Hx g E3GIYC} S2te- B8 A 2
GlES %%ﬂr WAE Porn’ EH2 TAtolwAdiz], AR 2fHEsigict. olet 7-;“’]
TGDatasete] E4 20|55 7|&EC &, A|FA 0= TAo|Y APZ] -Tep/dx 2 0 -TAjo]
/A 9] A 7HA] 2 HE 59 SUWAS 5T

3.2.2. @AO|E Ci|O|E{ 4 x| {57 2T

YAtol £ TlolEfAle 3.1.2780] BRI E 7|8t £olQl gt 3.1.389] Tranco 7[¥ 02l
FS ST Psigion, ey e wujel ejo] WA AT ol o)Fl ¥R S V1E0R

Act. FAIR 2, x| 2o A7 Wsh Alelet &) AL AAE Eul 5L AR s
ol 2T ol HA] Aol =2 A E(H ] Afe] E) = H5614 “crime”
Folsiitt. Bt 2, Tranco T7|A]S &3l 2T 9 B2 =HIS2 L¥rQl
%l 0] oA ARg 2= P4 AP]EZ B3 "normal” 2pE-g F0{5H3itt

AAPo|EQ] Ao x ZF = iQlE HTML AEAR} EIA E ] 80b0 2 = J1xj|A1 0] ¥ 5] 4H
olL} BA|(o]: F8AP], OMYTE G, Aol WA 5)S AT W] ofHL, Ao]
BE 2ol A|Al0] AT} 72 Al ES Uo] ZAES Q12A|7ke] Hloko] EAYsIACY.
wjebA 2 Aol A= Aol E HlolEj Ao tish AR 84| {-47HA] e sh| Wit HE
A AO|E o BRES 25 o]7l &2 2oz WS Aletstith

Lo oA
wE R o o
wo _O,L' rulo

_4

l:
E

o

3.3. XA = A7|of @A % Jef= A

B AP0 AA DL SA ey 255 7IYE FA wC 2 MAlsolck Delasd A
2} WApol Eak £ dlo]g] Ao o) BEA 02, (1) FERA/ED T2 HAES Wat

= <)
F. (2) ko] =7t W2 Tol & AlAsHL, (3) M=ot 35T AL BEES 7|02 A9 314
71 B0 e & 2 HEEG AFRSIGICT. o]2fgt & ME 7|5S Boll Tefx R E E2E Qs
719R] oA &, ZF A /ALo| Eo] A E/4Z A Eojule Tol S8 E7] =5 519

o

33.1. E 7/d ™|

TGDataset 719h & 238 TR moflAlE 2 A E(uid)S shte] TefE o2 B, T Qo]
Fe AR oA Fo] EF-2 FE5H0] =2 ARESHIT o5 {all BIA HIAIR] 2AtE S
63EHE Atslstal, RegexpTokenizers 0|86} dutdl-£AF 230 A7 | =2 &35}
gofet of 24T EZ, A2 9159 EFS AIASHIH. 0] WordNet 719 24
2 H8a), 1190 28 Tl oo o202 B0l =8 o] = A8 Foltn

> u°l‘
lrn

0 Q@ o M -
4wﬂ

=

~ _|Zi
1
~
>,
o

7} SoQle] thel 2 HTMLOA 25 gHao] SlAES tjyo

AT TH HA GR|E- Trancooﬂl\‘] AR5 ZF wf|olo] el A E

2| FRAIE 1502 BU/TE L B, 202 FHT BRI a4 7] BAAL

AlelstRtt. 2f g0l thsl Kkma Fej4 2475 ARESto] BARE &0t 7, 280 R 2

0] Q= £22 MZA519ick. o Uobk, ol thol7} e Clojo] @hais] Eeleli 2ol i
o E-

o, " 2etRIAY") Be ES AAstel, Bok PAIR B WA} des BeYsiot,

hu
og &
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I, O[CKS, 2N, 844, LS. 2025. 7I9IS 7|4t KIAIZHTOl GNNS HE2H A0l HE 25

3.3.2. 9IX] 19 ™ol

B AoA A= 7|YE rE 7 152 sk 947 FEH 7|9t ofix]
FAR] SAFE (cosine similarity) 7]8F OIX] &= 71&] 2 JLA4519ct HlolE] A A0] EAjo] wh
2} (1) &ef 228 AE 2 mol= 253 AR 9} oJu] GALE K|S 7212 A 8519 11, (2) WAL

o

o] £ Jejmoli oju] QALE AR|TH A ESICE o= HTML 75 5§44 o] ] &2 Eq
A1 1213 945 SR O] 64512 Helot] o1l T 2ol Yol ElOIElalA L 5
& ol2pr| et Holob- B FAS vgsts 3Tt ke

rek
Eﬁ

F

IR ZAAE 7 A U] HAIAIE 1RO s,
OAIA] Qo4 @7 S5t 7191 S 42 353 9A| 2 Felsteict. Bl AP 2 Al 2]
£ E2 YRR, B30 YA 2P A A S AR s, g oIAIA] SrollA] S

ohe B 719 =S Aot olnf] 54 gt oA A] QoA 22 o] of2] ¥ 575ttt e
ST 7L ESEE S shof, Am/g H}%ED}% "2 AR Qtoll I 2T 2 B E
o] -5 Rt ofof wa} e 18d Jefjmo] oIx]= "2 A E Q] HIAIA] QtoflA] K}T Ely
7 S7ste 719 =5 Alole] A2 UrEMU%, I3 ee 35V ZAS 7HEAIE &
gl&]o] SIX] 715%](edge weight) = AFE-E]QlTT.

1ol RALE AA] : 9]0 GALE S| = Elief| T30} AL E el w fof] 3502 A8k
WA AR R, APES Aol wd S Fofl AHEE 7] E dud #E 7H IAR] fALEE o]
oo 719 = 71] oJu| A 2GS BT HA 2t e s R M AE Y=ol
Ul YAF 719 Eof] tjs] gh=to]-Fo] FME BFERE APK e Qlo] B2 A-8-510] e
B S AL o] w.E 719 & o] tsl] ZAIQ] fALES AHESto] X & AAdstyl o,
o[HA] A8 éﬂ QX o= F 719 & AHID TF IAR] fALE g QK] 7H5A] £/ 0.2 Fofst
of, 3ol F4F F 719 =9 9u|A Aol o S HEt =5 5%

34. StSHO|E 4 U EH

3% By ofg HolgAle F 2237 Adz HEen, mdd HAR] e
857,6237]0]aL A'2F g+t HIAIA] = oF 3,846701T. o] & 7S AEY = 115701,
H2 A AE e FELER 27 AolH AP] 8871, o= T8 157Y, AtolH /g 2] 574
2 EE o, Fat 1PE e & 2= 18,1272 F/dE AT oFE £]E JIALO| E St H|o]
B2 & 1120719] =HQl o2 S/d o] Qlon, Ha|et AUEA] ot =Wl 677712} 4]
oF durd o9l 443702 2t ot Wt 1 o] & e 19.3372 AU

S
a
_]

L
L
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Jm

5T A4 TP IE GNN 810 753 4 B2 Wisy] 9] ey 2 e —
' ©-01%] 524 4t Cypher-to-Tensor #g A2 M §319Ck E3t e 1342} YAfol
E Hojelt 9lojx S Grof Rmzt olatnz, & Holello] s A2 The APHsks
Qlolm g isto] A gLy,

4.1.1. TGDataset 7|2+ 2|0z Jefj=o| AW 2l HE Mk

Hef| 23 o] B = Fof 7]9H] A1l mhEA Q AR 2 q/AdElo] Jlon, Thof Ty B2
Z7F gEsttt. o] ©ol P oulA fAL=E eMgAle® whdsH] sl MEN Test
Collection(Bruni et al., 2012) & &85} Fo] YWY 22 Fr}stch MEN2 = 3,000
He] o} QIZF fALE AR st medo] AbESH FAR] fALESF QITE A4 31
Spearman JH75(p) 2 YWY S w4 ok

FastText, Sentence-BERT, Dense Retrieval 7|9t 2d 5 & 3%& v|wst ZAu}
FastText7} 7 =2 A=(p = 0.8427) & 7|55t3tHSentence-BERT: 0.7643, Dense
Model: 0.6811). o]of] w2} &e| 78 T2fmo] QAL 7|6t ollx] 7}5A] = FastText Q8™
cosine similarity 2 %]5}9ICh. 3HH £ QIS tho] 2% ojn] AN WL} o Eugh
e AHEE €rdE —Qrt 9lo], WordPiece 7]¥F subword HZ$o] 7hsst
bert-base-uncased 23S AHE-5t] ABAd5HYTH

]
LN

412. WAO|E 2ol UMY B HG M

ATO|E TofEf 3H0] 7| AL 340 7] S 2 TR 2. gho] BAZE Qo
APES QPIR 0 R BAT 4 bt YUY 25 A7go] BRSITE # G014 MEN Dataset
Ol %o} 7]gtoleb= A& wajsto] o2 §h=ol 2 A4 Welst MEN-KR HA]0t2.2 75519

31, Y& MEN H4(0-50)& 0-1 7t7tC. 2 Min—max 7Jfststo] H7tof| &-8stgict

o|5 monologg/kobert, skt/kobert-base-v1, klue/bert-base,
monologg/koelectra-base-v3-discriminator, klue/roberta-base,
tunib/electra-ko-base, kakaobank/kf-deberta-base & & 7%-0] 5t=0] A}XShS A of
23 MEN-KROJ|A vl w5ttt A ZAu}, kakaobank/kf-deberta-base’} 71 =2 3
v Spearman ‘U7 (Mean p = 0.573) S 7] 551120, o]= gh=o] GAL T 0fA] A
e 7V QPR 0 2 BHarg ojujgict. b £ A 7oA SAtol £ Tejmo] At 7]
§F 91%] 715712 Kf-deberta-base QJ¥| 3 ul&h0 2 o|5} 00, T QJu|y E3 5
2F ®elo] 3 11o]A] Bl embedding layer& AHg-sto] A 2ju] 7ol A £ASHI.

4.1.3. X[ Oe2j= &AMz}
2 AFollA 5= el 138 U Aol E 718F X]A] T2 = Neodj Cypher A0 2 A7
TH, o] GNNOJ sh5of] &-83517] sl PyTorch Geometric(PYG)o] 8 715h= §llA 22
HESIICE PYGY] T Tl 1= (1) =& Jud 38, (2) AX] A2 &, (3) AR 7
A], (4) 1= 9] o] 52 FdEnt. 2 Aof| A= Cypher A7 |02 88 ofid X523 A%
st ARLE 71&3i
& AX] ’IM3E}: -5 7|9 SR = & 238 e mofl A BAA] T Q] FUA ZE
gtgstr] 1ol AH2E] Qict. Cypher THolli= 2} BR[Ol A 3P 5788t Thol (s, t)
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oIz, O|ck2, ANz, B4 ATF 2025. 7IAE 718 XIAO2H=9f GNNS 2&% A0 EHX| EF7

A AAIN A ZE 51471 weight 4402 71250} 9o0], B A0 of
£ 7]9ro 2 BIA efe] OA) YRS TSIGCE BA L CHL F4 ASlAR B F, B

53 Wl YIS WGh] Aol 2 ARl PPYsoL o)
edge_index §IMS AJ/d51RItt. ot Cyphero] A% 559 7HeA| 2 24 AA =2
&5to] edge_attrof] AGLO2H, qX|9] Freg Held}

FAE SIR]  ElAE Z]RE ofu] AEdS whgsty] #fsl = Hlol Bl B AR FALE 7]
W] FALE SIA S st oL, Hlolg £29] Rfo|= Qs FARE AR o Told A%
A2 Mz oheA AAsHAT B HAIA] = AL B P A o]0 o] 27} Rlop RE T
opgo] SALEE ASHE 1L u]Eg Aol B2, B AN HIAIA] Ul e Sm o
op F SALE 9] oF 407] TS Mstol GALE |2 BB AEE Topge
Cypher A7]ato]] IARD FAR=C} S AAHD, ©IA W DAA= o] 0=
edge_attr= st v1H AAtolE HAEE if|Q] o] H| A QP Al 0] sh=o] T
ALY RS 7R B R, B Oy Ze] HAIR] T S8 £&0] o]ty ofof Z =dj?lo]
A RIEZF 2 oF 2071 Hie]o] s PALS =2 AT, ol 5 k& IF IAR] FAHES A
Afsto] oj2] At %‘.7%17*0 UEsStE HoiS AAE AR = it siY RAEE
kf-deberta-base AH|FS 7|90 2 AHEE|H, Cypher A7|afo] 7|55 F EIA #Het A]
edge_attr2 93 =t

vt Qg = ElolEAlY] & mA S AR A4
Aol thl s @lojo] Apists R E3tolxl2 M8 stel WordPiece 7] HuES
(subword token) @ 2 F3H5tRICt. M BEZ-2 QoA e JH S AMEelet 9=, oE
0] gof EJrOi “international”2 inter, nation, al 52] JBEZ O 2 dt=o] tho] “ZgH
5" 3, g, 9, Aok o] ofe] 32 thelz Bt BalE A& 20 s embedding
layere] EHE 5568 5], RE AUES QI BiHpoolingloo] 515 7683121 T
o el 4 o] WAl Tl chof e e} of g 29 g vdstol
= Hxo] B32S P AFHOR PHY 1 WA WAL Xe RV T0 e,

32
o T

=

VS

—-
L
i
Z
fu

ASICE. 7} oj(gol-atato]

2 m\m

oz
oX
ol
-
2

N L‘

4.2. Ao|HEHZ| 2R/RE ?Iet GCN 24

= AollM = 4. 17301 A g ofet ’| 0l AAo| E AJA DS ¥ o e, T s
A7 Graph Convolutional Network, GCN)-2 o]-8-3f EHE Q] AtojHHE] B2 4~
Jstict. AlQh e Kipf & Welling®] GCN L2572 54 2.2 5t 05 GCN 7|4 &
74 2(main path)Q} 4= EA4S A vigdst= B4 7 2(a ux1hary path)& HE= /d3t
5], 5 720] 22 Asto] 2ehm-level EHE A 7Y Ue] WA PAES AFGIIACH

7 3 G et B4 R XV erR™ Y Aaste oF B A, dX| T1ER(BE
U e g 7]t SALE)S E3lets el RAECH T GON 52 of2 tAlx] T4

-

Hejz Aojeny, gV = x, w' = st 7158t 7157 sigoln], o( - )= Hl’Haﬂ /gt
stao|t}. 4912 PyTorch Geometric 2to]H.g{2] 9] GCNConV D52 225191, 9K 7}
%A= edge_attr2 Agsto] 35 FALE 7[8F UA] =g ¥rgsioich

HIPY = g(AH Vw V)
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<Table 2> Layer configuration of the GCN-based cybercrime classification model

| 42 A4b/2]|0]0f U A | B KR | 2oy Enet /EE0R
0 | S8(83) | 28 =E 54 :X0) Nixd Nixd -
1 ! GCNConv._1 Nixd | Nixh GELleJr’Oiroauri?o'\";rm’
2 el GCNConv_2 Nixh Nixh GELU
3 |2l GCNConv_3 Nixh | Nix(h/?2) GELU
4 HX GCNConv_aux Nixd N i x (h/2) GELU, Dropout(0.5)
. X
s B | e Nk | NI -
> Global Mean Pooling Nixh 1xh -
7 | SEEY Linear(h — C) 1xh 1xC Softmax (B A|)
EARoRL, e we Juigo] AT FRAIH 37he GON 252 Salsio AR oe
AFFdold—h—h/22 HAE, st F2oA= dolA vt d—h/22 BEFH F, & &
g dZFst 1 25 B S e 20N AT B 2e 1A} o] % L&LE K] 7HEA]
£ VISt NAF 54 S, SiEt R PR YUYl o Jte AR BHS WE
O 2H, 712 SoM AL 4 Q= A E A Yelehs 459 A7 B2 A4S o8t
Tt A ¥R GCN 5 &30 GraphNorm-Z &850 x| 7F 57 Ajo] 2 QIgh st E2Hy
= &%e, 2} J 20| Dropout(0.5)& A-&sl 42 L2 glo]EjAllof| A 9] atA g3 ¢hat
SIoAT}. &/de} eh4= RelU tjjv] BE2]# v 9dS Al&ste GELUE ARSI
2 G PO GON § (245, 84 4 27I(0e3264.128), Yok o
(ReLU, LeakyReLU, GELU) = o] M58 Hol= 2ul LR 2 Ah= x| A5 A]
d= e85ttt 22yt of 2207H % 1,10074 ELE—J 2] 213 51 HAo] E Go]E] ROl A]
L BARE PAR A4S EAR 0 R GOl A% apito] LERIA 97Ut 95]2] WEAo] 7]
Rl Aol WEE QI olof & AtoflM= 5 P, sliiA 7He7d 1t w2 128isto
et 22 d BE oA GON 25 25 22 2 AEsHaiT
43. Hlm 2 3 Hjo|Aztol
& Aol = ARrer GCN 7|8t 2= 27719 d5=5 FEsh] Holl, 1= 125 &
$o17] o MEA oAleg 9 Held Rg uw oo e Adelgirt. RE ulm ne
U ARSI ol Reol A VYT YPS Y02 ALl ARl Ze TPE 1
= AT SEIA A T e 138 HAIA] E= o] X] ElAE O] ojulA] mlTS &
g5t} BES 2315H} 02 S 1)m 7|vE 25 AR} A 95 BE A4S s 7]
she A= YA o Yrlstusl st

4.3.1. H2'd Hjo[22tel
HAlR G 7 RN = 2} A4S 7d5he 768AHE 2] B YHFS Bt (pooling)st

AT 117 3719] ¥E|(document embedding) & A8/d5t § ol & R/l Y53t of
2t g2 Jjm L& glo] ofo] 7§t WE BATHS ARSI S Tho] BF Ad5-S HUI6H ]
¢t Zojot.
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B

>l

2X|2E 3] (Logistic Regression): A8 AR 73A] 7]4te] th5-E5 g 5] 4510 v
MFdE 7Pdote A 57 Aloltt. o] & goll &4 Lol ieﬂ’\ PR o= Fe

IVSERIS 2Rt Hlo] Aatel g A3t

j e

_l,'L

XGBoost: E&] 7|8t gradient boosting R & &, FA] & AH|J oM &8ofo] v|AHA
RIS o} FerA] aH5e 4 QA| Botsr] 91 2t Aleld baseline.2 A5

%Eﬂé lﬂ Al OJOHHL Jex L QRS AA5] AIATHJENOA o4 AT 718 s
‘d52 5735t o] & sl thS A E&(Multi-layer Perceptron, MLP) 7|8t &R771&
&5t

O3 HAE 2 3 A2 256411} 128714 9] = 7]9] Fully Connected £-2 £5]]
| Dropout &-&3t0] yPAgHe WAlsIgicH ths HAERS 1
_‘|

o u
— = T
7} Qi A10A A1 Belo] 8143 4 9k BRI S BIE] U3t Ao,
E
=

o
)
=2
>
rlr
>
=
it
py
)
n
g
o u@
)
~
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2
|m
(@)
@
=
H
i}
o
_ﬂ'l
ful
0
Z
|
fd
I=]
il
h:
rok
rok
4n

GNNoj| 9}=5h=®A]o], B3] == clﬂﬂ% —A}ﬁo}oﬁl Hﬂol‘E}O Eﬂﬂﬂi% nas 34%
oqsrhxl‘z Az} ol2 9l 2 Ald % =09l
do] HIE|S FL/dstaL, XA o], oF HYER
(MLP), XGBoost G 1 125 A}%B}K] ol by pElS sk A0St GON 78 &
F wedule] FA A Aol 2 BAlstct

-

=
H o] g = Alge NVIDIA RTX 6000 Ada Generation GPU 27l(Z¥z} oF 49 GB
VRAM, £ 98 GBVR AM)S’} 251 GB A|AH 0| B 2] = &Rljst 2] A AH| o] Mof|A] 48851 g Tt A
ZEo] 232 Python 3.11, PyTorch 2.6, PyTorch Geometric 2.7, scikit-learn 1.7.2
g 7]H}OE:[L§1_ }o:lotq L =y o]H;ﬂ 211 7301] -] t‘gg g = oluﬂu E_l:—l] al E{/\-]Q‘}x-]ak
2 2gstgct

Hef| 23 A Hllo]Ef = st /H A E Hlo|HAlS 217F 8:2 Hl-& &2 Al 5A (stratified) w5t
Ral, YA E =fQl glol8] E3F x|/ vlaa FAISHES 5tof sts/HAE o8l
2 217} 8:2 W2 BASIACE GON 7|3t Aok welwt 2|28 89, O TAEE,
XGBoost 5 Ul @42 FU o3 ElAE HAE FRAHeS dfof. 210 75 0jo) aglo

3 %0]7] 913 14 AL= 1~1000] Taf 217}

=502 ClolE|2 Raleh ol L Y Bl 2 ARl @e A A0 Bag B us)
Rt

sh&o njUulx] 27] 3202 Zlsistgion], &4 shag thE ZejA WA JlEZm]
(Cross-Entropy)s ArEstitt. £AsH= Adam JE|OFO|AS AMsh X7

ku
ro
rol
_>.:
olr
_>,t
2
U
o)
P~
AU
o
4]
)
M o
ol
o
o
Ho
re
ox
\l mlo
)
ook E

&2
M

2
g

Cjo|E{ =2 Al T / Journal of Data Forensics Research 189



I, O[CKS, 2N, 844, LS. 2025. 7I9IS 7|4t KIAIZHTOl GNNS HE2H A0l HE 25

(learning rate)-2 0.0005, weight decay= 0.0001=2 AA
st 2 71SR]9] Al 0.0019] L2 g+tst 71se A
epochZ7}A] S5 4-3¥5HIA Of epoch0ft} 5 A Eo]| o
2 20| ATt He A 7R E A1E Rl e AEsiRIT). o] & AojlA= 7 T A
of tfjsf ArEE At AU e X F-&, Fl-scoreES T+ macro-averaging 7]&0.2
W ALtsto AP 45 Az ARt

o
8,
)
P
)
fu
1)
)
o
tjo
E
o
N

P
]
o)
o%,
|
1

5.2. X dsH|u
<Table 31} 4>= & 58 xf'2 go]E]Al 7|8t T} ZeA 72t Ao E Q] tjjo]E]
A Z18E o] A1 27of sl A|Qtet GCN 7|8 R Elvt v @50 AT &

}. I7} A| B Precision, Recall, Fl-score, AccuracyS macro 7|&0 2 ARS8

ol

O oZ

<Table 3> Performance comparison of GCN and baseline models on the Telegram muilticlass dataset

oHE Precision Recall F1-score Accuracy
GCN (Co-occur) 0.8490 0.7787 0.7968 0.9167
GCN (Similarity) 0.6527 0.5136 0.5407 0.8182
Logistic Regression 0.2917 0.2652 0.2101 0.5318
XGBoost 0.4410 0.4587 0.4474 0.7984
MLP 0.5938 0.5932 0.5917 0.8682

<Table 4> Performance comparison of GCN and baseline models on the website binary dataset

o Precision Recall F1-score Accuracy
GCN (Similarity) 0.9195 0.9196 0.9195 0.9196
Logistic Regression 0.8788 0.8750 0.8758 0.8750
XGBoost 0.8800 0.8795 0.8795 0.8795
MLP 0.8634 0.8616 0.8593 0.8616
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<Figure 3> Example of similar HTML structures in a legitimate and spoofed shopping site
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